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Abstract. Transformation of nonlinear plasma equations to a space-independent frame 
with the help of the Lorentz transformation gives in place of partial differential equations 
a set of ordinary differential equations in a single independent variable for solution of 
nonlinear field equations. In this paper, this transformation has been used to yield the 
nonlinear precessional rotation of electromagnetic waves in plasmas in addition to the 
nonlinear shift in a wave parameter. Moreover, the Lagrangian and Hamiltonian of motion 
for a circularly polarised wave have been transformed to the space-independent frame and 
the equations of Akhiezer and Polovin for nonlinear plasma oscillations have been rectified 
by making them relativistically correct. 

1. Introduction 

Transformations of the field equations to a space-independent time-like coordinate 
system with the help of the Lorentz transformation (LT) can be very well used to solve 
higher-order differential equations for investigating nonlinear phenomena, e.g. self- 
action effects in plasmas. Winkles and Eldridge (1972) first used the LT to derive 
self-consistent solutions of the relativistic Vlasov-Maxwell equations, and found that 
a pure transverse wave cannot exist in such cases but a coupled longitudinal field 
necessarily appears. Analysing wave propagation in a cold, collisionless, two- 
component plasma in the frame of reference in which the field is not space independent, 
Clemmow (1974) showed that if there is no ambient magnetic field the solutions of 
the field equations will be those of ordinary second-order nonlinear differential 
equations. He also discussed the significance of stream velocity on the propagation 
of electromagnetic waves. Subsequently, Clemmow (1 975, 1977), Chian and Clemmow 
(1975), Kennal and Pellat (1976), Shih (1978), Decoster (1978), Clemmow and Harding 
(1980) and Lee and Lerche (1978, 1979a, b, c, 1980) extended the usage of LT to 
investigate different types of nonlinear problems in various kinds of plasmas. 

In the present paper, nonlinear space- and time-dependent field equations of an 
unbounded multicomponent plasma having electrons and ions (positive and negative) 
have been transformed to a purely time-dependent set of ordinary differential equations 
using the LT. Using the equations in the space-independent frame, the nonlinear effects 
investigated are the intensity-dependent self-precession of the polarisation of an elec- 
tromagnetic wave and the shift in wavenumber. Earlier workers, however, used different 
formalisms, e.g. the BKM method (Chakraborty and Chandra 1978, Chandra 1980), the 
Lindstedt method (Chandra 1974, 1979) and some other available methods (Arons and 
Max 1974, Katz et a1 1975, Lai and Wonnacott 1976, Khan and Chakraborty 1979, 
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Chakraborty et a1 1980, 1981, 1982, 1983, Bhattacharyya and Chakraborty 1979, 1982, 
Bhattacharyya 198 1, 1983), to derive the expressions for precessional rotation and its 
complementary effects of electromagnetic waves in plasmas. In our present analysis 
we have also generalised some well known results reported earlier by Akhiezer and 
Polovin (1956) on electron motion in the presence of a strong electromagnetic wave. 
Circularly polarised waves being important in the study of strong waves in a medium, 
the exact solutions are obtained without any simplifying approximation and the 
Lagrangian and Hamiltonian of motions are also obtained for these waves. The 
mathematical techniques developed here may be useful in the study of other types of 
nonlinear problems in plasmas. 

2. The basic assumptions and field equations 

We assume (i) the plasma is stationary, cold and homogeneous; (ii) the incident 
electromagnetic wave is strong enough for the occurrence of relativistic motions of 
ions and electrons; (iii) the incident EM wave propagating along the z axis is transverse, 
circularly or elliptically polarised, and sinusoidal; (iv) the power bf the wave is below 
a certain threshold limit so that self-focusing and self-trapping mechanisms are insig- 
nificant; (v) self-action effects arising from the ponderomotive force and thermal 
instabilities are negligible ; (vi) the forces arising due to collision and gravitation are 
negligibly small in comparison with other forces present in the medium. 

Under these assumptions, the field equations in the laboratory S-frame can be 
written as 

with 

(a/ar + * = qa L E  B ) /  cl, 
(a/al)N, +div(Nava)=O, 

curl E = -(I/c)aB/at, 

curl B=(l/c)aE/at +(477/c)z Navaq,, 

div E = 477 q,N,, 

div B = 0 

a 

a 

where the index a = 1,2,3 (parameters with subscripts 1, 2 and 3 denote the electron, 
positive-ion and negative-ion components respectively); q ,  = -e,  q2 = e, q3 = - e ;  moa 
is the rest mass and other quantities have their usual meanings. 

3. Transformations to the space-independent frame 

3.1. Space-independent frame 

The LT from the S frame to the S' frame moving with relative velocity Vo parallel to 
the z axis is given by 

(8) x = XI, Y = y ' ,  z = yo(z' + Vot'), t = Yo(t '  + Voz'/c2) 
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where 

(9) 2 -1 /2 yo=( l  - v:/c ) . 

z = z’ cosh +bo + ct’ sin +bo, 

Following Decoster (1978), if we put Po = tanh +bo in (8), we find that 

t = t’ cosh $o + ( z ’ / c )  sinh +bo, (10) 

where $o is the hyperbolic angle for the S’ system relative to the S system. Using (10) 
we obtain 

(1 1) 

where k and w are the constant wavenumber and wavefrequency respectively of an 
electromagnetic wave. Now following Winkles and Eldridge (1972), the velocity of the 
S’ frame is assumed to be 

wt - kz = ( w  cosh $o- kc sinh +bo)t’-[k cosh +bo-(w/c) sinh +bo]z’ 

Vo = kc2/  w = c2/  V 

wt - kz = (U/ Yo)?’ = u‘T 

(12) 

(13) 

where V is the phase velocity of the wave. Then (10) leads to 

where U ’  = w /  yo and t ‘  is replaced by T. This relation immediately gives 

a l a r  = Yoa/aT,  a /az  = -(yo/ v)alar (14) 

Relations (13) and (14) indicate that the LT enables us to change the variables from 
the space-time-dependent S frame to the space-independent S’ frame of primed 
variables. For transverse waves V >  c and so Vo< c ;  hence the relative velocity of S’ 
and transformation relations of (13) and (14) are not unphysical. It is important to 
mention that Akhiezer er a1 (1975) considered the non-relativistic linear transformation 
rule 

wt - k z =  UT, V =  w / k  (15) 
to solve the plasma equations (1H6) to investigate some nonlinear effects, and Boyd 
and Sanderson (1969) took the special value 

v = c  (16) 
for some investigations. 

3.2. Transformation of some field variables 

The electric and magnetic field components of the S system can be written in the S’ 
system as 

E , =  yo(E:+PoB;)= ELcosh 4,,+B; sinh $,, 

E, = yo(EL-P0B:)= E :  cosh 4,- B: sinh Go, 

E ,  = E:, 

B,=y , (B: -P ,~EJ)=BLcoshG, -E:  sinh Go, 

B, = yo(BL +&,E:)= B :  cosh & + E :  sinh $,, 

B, = E:, where Po = Vo/ c. 
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The transformation of velocity components from the S frame to the S’ frame is given 
by 

(uhZ +pot) - c(u&, cosh llro + c  sinh 
(1 +Pou&,/  c) - c cosh i,bo + uh, sinh 

’ U,, = 

The transformation of mass being 

ma = mbYo(1 +PO~&L/C), 

as may be seen from Hughes and Young (1966) (where mo is the rest mass), the 
momentum components are transformed as 

Pay = m,u,y = mhuh, = PLY,  

mhyo(c+pouh,)(u&, cosh cL0+c sinh ccl0) 
P U L  = mouaz = (c cosh + uh, sinh JIo) 

=PLY0 + mhcPoYo= Y O ( P b Z  +moVorh). 

Defining now the momentum-like quantities q and q’ as 
I 2  I/2 qu = ( m i u c 2  S P ; ) ” ~ ,  4 h = ( m l L c 2 + p , )  1 

we find that 

q f  = mime2 + mia V: - m&,c2 I2 2 = m u c  
(1 - VI2/ 2) - 1 - V’2/ c* 

where V‘ is the velocity of the S‘ system relative to the rest system So. So we have 

If N, N‘,  No are the symbols for the number density in the three systems S, S’, S,, 
respectively, then again following Hughes and  Young (1 966) we have 

N&/N, = m&/m, = mhc/m,c = qh/q,. 

The first relation of (24) gives 

No, = Nk sech +’= constant 

and the third relation of (24) can be written as 

Nh qa - No,% cosh *’ 
[qa cosh (*’ - *) - Paz  sinh (+’ - $11 

N,  =--- 
qk 
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where CC, is the hyperbolic angle for the S system relative to the So frame and  9’ is the 
same for the S’ system. Therefore, in the S system the number density is not constant, 
and in the absence of the negative ions, electron and  positive-ion number densities 
are not necessarily equal. 

For the vector and  scalar potentials A and 4, since these potentials form a four- 
vector, we can write 

A, = A:, 

4 = y 0 ( 4 ’  +BOA:) = 4’ cosh 

A, = Ai,, A,  = yo(A: +Po4’) = A: cosh Go + 4‘s inh  Go, 
+ A :  sinh t,b0. 

(27) 

3.3. Transformation of the jield equations to the space-independent frame 

We assume that there is no static magnetic field in the plasma and  so B, = 0 = B:. 
Therefore, in the S’ frame equation ( I )  becomes 

where 

and parameters with plus and  minus signs indicate the values for the LCP (left circular 
polarisation) and RCP (right circular polarisation) components of the electromagnetic 
wave. 

The equation of continuity ( 2 )  yields 

N &  = N o ,  = constant. 

From (3) we obtain 

B:  = constant 

similarly E; = constant. 

Moreover, (4) gives 

Since U,, = 0 when uh, = - Vo, we may put U,, = - Vo + 6u&, to avoid a physical impossi- 
bility where 6u:, are the second-order velocity components parallel to OZ‘.  So 
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4. Nonlinear shift in wave parameter and precessional rotation of an electromagnetic 
wave 

4.1. The case of a circularly polarised wave 

For a circularly polarised wave, we put 

E :  = ae*ie and E : = O  ( 3 7 )  

where a is the amplitude of the wave and 6 = w L T .  Therefore, for such a wave, 
nonlinear dispersion relations for LCP and RCP components are obtained from ( 2 8 x 3 6 )  
as 

( 3 8 )  I2 1 / 2  d"=C w;,[l - ( d , / w ; J w * l  

%a = (qmal moawpuc). 

where 

Replacing w :  by o, /yo in (38) ,  the exact dispersion relation can be obtained for the 
laboratory frame. After expanding the square root term we recover the modified form 
of the equation of Arons and Max (1974) for multicomponent plasmas, if 774aa are 
neglected. To find the nonlinear wavenumber shift of the electromagnetic wave we 
put w ,  = w and k ,  = k + Sk, in the dispersion relation, obtained from (38) ,  for the 
laboratory frame. 6k,  are the nonlinear increments in wavenumber. Thus the 
wavenumber shifts become 

( 3 9 )  

This relation shows that the LCP and RCP components of the wave have the same 
wavenumber shift. So the precessional rotation +[ = i(Sk- - Sk+)z] becomes zero. 

Sk*/k  = c daXpa/4(1 -xpa>. 

4.2. The case of an elliptically polarised wave 

Since an elliptically polarised wave is a combination of two circularly polarised waves, 
we write 

E : = ~ [ ( a * b ) e i B o + ( a + b ) e - i B o ] = a  cos 6 , i ibs in  Bo (40) 

where 

the nonlinear dispersion relation becomes 

= w :  T, a and b being the amplitudes of two circularly polarised waves. 
Therefore, from ( 2 8 x 3 6 )  finding the first harmonic solution for the third-order fields, 

w: '=X  + k i C 2 ( v a a  * ~ b 0 ) ~ / 2 ( 4 - X p a * ) - $ w ~ [ 3 ( 7 ] ~ u  + ~ 2 6 m ) F 2 ~ a a ? 7 b a ] )  (41) 
where 

77aa = (qua /  mOaWC),  7 ) b a  = (qub/ mOawc)* 
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The expression (43)  gives the average of the wavenumber shifts of LCP and RCP 

components of the wave. Expression (44)  shows that an elliptically polarised wave 
gives rise to precessional rotation (PR) without changing the ellipticity of the polarisa- 
tion ellipse. Expressions (43)  and (44)  are modified forms of formulae (24)  and (25)  
of Arons and Max (1974) for multicomponent plasmas if their symbols are used. 
Moreover, if we put v b a  = O  in (43)  and neglect the contributions of positive and 
negative ions of the plasmas, we recover the results for the wavenumber shift of a 
plane polarised wave, first obtained by Sluijter and Montgomery (1965). 

5. Akhiezer- and Polovin-type nonlinear equations 

Putting Qh = ph/ moat, and using (32)  in the derivative of (28) ,  we obtain for purely 
transverse vibrations 

Similarly, for purely longitudinal oscillation we obtain 

Equations (45)  and (46) ,  obtained for no static magnetic field, are relativistically correct 
and more general than equations (8.1.2.14) of Akhiezer er a1 (1975). 

6. The Lagrangian and Hamiltonian in the space-independent frame 

Following Landau and Lifshitz (1975) the Lagrangian and Hamiltonian in plasmas in 
the laboratory frame S are 

(47)  1 T= - ~ N o a [ m o a c 2 (  l - ~ ) ” 2 - - ( A * u a ) - q a ~  ‘la + ( E 2 - B 2 ) / 8 r  
c 
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and 

where 

In the S’ frame, 2 and X are given by 

2’ = NOa { mouc2[ 1 - 2 (U, +U,- + y;u&2L) U&, +A ~ h 2 ,  - . . . 
V 2  

+ e y o ( 4 ’ + P o A : )  -y$1 -P;)(E!+EL)/8r- E:’. I 
Using (37), for a circularly polarised wave, (49) and (50) become 

and 

The results for the Lagrangian and Hamiltonian in the laboratory frame are obtained 
simply by changing w ,  to w J y ,  in (51) and ( 5 2 )  where y :  = w : / ( w :  - k:c2 ) .  

Following Whitham (1967, 1974), Dysthe (1974) and Das and Sihi (1979, 1980), the 
Lagrangian derived in (49) can be used for finding the nonlinear effect including shifts 
of the wave parameters in the space-independent frame with the help of the transforma- 
tion relations of § 3. 

7. Remarks 

(1) To obtain the final results for shifts of the wave parameters and PR in the 
standard form one should transform the field variables at the beginning and then 
proceed with the calculation. If instead the equations were solved in the laboratory 
system before the transformation, and transformation relations used only in the sub- 
sequent stages, then the correct formulae would not be obtained in the space-indepen- 
dent frame. 

( 2 )  This technique of transformation to the space-independent frame is applicable 
only to a single propagating wave, because the condition required for space indepen- 
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dence, V, = c2/  V = kc2 /w ,  is not satisfied for two or more waves interacting with a 
medium. 

(3) For very high intensity focused laser beams the PR will be seriously disturbed 
by the growth of inhomogeneity due to the local increase of the refractive index leading 
to filamentation, wave bunching etc. So one should first study instability of electromag- 
netic waves in the space-independent frame before evaluating the PR. 

(4) By transforming the field equations to the appropriate space-independent frame, 
some of the field variables become either constant or zero (for example, the number 
density becomes constant and the oscillating magnetic field vanishes); for these reasons 
and since the differential equations become ordinary rather than partial differential 
equations in the laboratory frame, some of the nonlinear terms vanish. But as far as 
ease of manipulation is concerned the net advantage may not be as great as at first 
sight because complications arise due to the LT and the consequent velocity transfor- 
mation. 

( 5 )  When the interesting additional effects of collision, gravitation, kinetic tem- 
perature and static magnetic field etc are considered, evaluation of the nonlinear effects 
like precessional rotation and shift in a wave parameter with the help of LT will be, 
of course, complicated. Our work on these problems will be communicated elsewhere 
shortly. 

References 

Akhiezer A I, Akhiezer I A, Polovin R V, Sitenko A G and Stepanov K N 1975 Plasma Electrodynamics vol 

Akhiezer A I and Polovin R V 1956 Sou. Phys-JETP 3 696 
Arons J and Max C E 1974 Phys. Fluids 17 1983 
Bhattacharyya B 1981 Physica C 111 369 
- 1983 Phys. Rev. A 57 568 
Bhattacharyya B and Chakraborty B 1979 Physica 97C 257 
- 1982 J. Appl. Phys. 53 868 
Boyd T J M and Sanderson J J 1969 Plasma Dynamics (London: Nelson) 
Chakraborty B and Chandra S K 1978 Phys. Fluids 21 2336 
Chakraborty B, Khan M and Bhattacharyya B 1980 Phys. Lett. A 78 454 
- 198 1 Phys. Rev. A 23 344 
- 1982 Plasma Phys. 24 585 
- 1983 Phys. Rev. A 28 1047 
Chandra S K 1974 Czech J. Phys. B 24 1338 
- 1979 PhD Thesis Jadavpur University 
_. 1980 Acta Phys. Pol. A 57 695 
Chain A C L and Clemmow P C 1975 J. Plasma Phys. 14 505 
Clemmow P C 1974 J. Plasma Phys. 12 297 
- 1975 J. Plasma Phys. 13 231 
- 1977 J.  Plasma Phys. 17 301 
Clemmow P C and Harding R D 1980 J. Plasma Phys. 23 71 
Das K P and Sihi S 1979 J. Plasma Phys. 21 183 
- 1980 Beitr. Plasma Phys. 20 215 
Decoster A 1978 Phys. Rep. 47 285 
Dysthe K B 1974 J. Plasma Phys. 11 63 
Hughes W F and Young F J 1966 The Electromagnetodynamics ofFluids (New York: Wiley) 
Katz I ,  Parks D E and Rotenburg M 1975 Phys. Fluid 18 895 
Kennal C F and Pellat R 1976 J. Plasma Phys. 15 962 
Khan M and Chakraborty B 1979 J.  Appl. Phys. 50 7977 
Lai C S and Wonnacott E 1976 Can.  J. Phys. 54 962 

2, ch 8 (New York: Pergamon) 



2026 B Chakraborty, S N Paul and S K Bhattacharjee 

Landau L D and Lifshitz E M 1975 The classical theory offield Article 75 (Oxford: Pergamon) 
Lee M A and Lerche I 1978 1. Plasma Phys. 20 313 
- 1979a J. Plasma Phys. 21 27 
__ 1979b J. Plasma Phys. 21 43 
- 1979c 1. Plasma Phys. 21 141 
- 1980 J. Plasma Phys. 24 89 
Shih L Y 1978 1. Plasma Phys. 20 289 
Sluijter A W and Montgomery D 1965 Phys. Fluids 8 551 
Whitham G B 1967 Roc.  R. Soc. A 299 6 
- 1974 Linear and Nonlinear Waoes ch 14 (New York: Wiley) 
Winkles B B and Eldridge 0 1972 Phys. Fluids 15 1730 


